Transforms - Derivative

 
   
     
       

Laplace Transform

       

Derivative Property of Laplace Transform

       

          This property enables solving differential equations algebraically. Derivatives in time become polynomials in \( s \), simplifying analysis.        

        Laplace Transform of a derivative.      
     
       
         

Formula:

         
           

\[               \mathcal{L}\left\{ \frac{d^n f(t)}{dt^n} \right\} = s^n \mathcal{L}\{f(t)\} - \sum_{r=0}^{n-1} s^{n-r-1} \left.\frac{d^r f(t)}{dt^r}\right|_{t=0}             \]

         
         

Applications:

         
               
  • Solving linear differential equations.
  •            
  • Used in modeling RLC circuits and mechanical systems.
  •            
  • Helps convert initial value problems into algebraic equations.
  •          
       
     
         
 
×

×