Transforms - Inverse

 
   
     
       

Laplace Transform

       

Inverse Laplace Transform

       

          The inverse Laplace Transform helps recover the original time-domain function from its Laplace domain representation.        

        Inverse Laplace Transform using Bromwich Integral.      
     
       
         

Formula:

         
           

\[ f(t) = \frac{1}{2\pi i} \int_{a - i\infty}^{a + i\infty} e^{st} F(s) ds \]

           

\[ = \sum \text{residues} \quad \text{(for } t > 0\text{)} \]

         
         

Applications:

         
               
  • Time-domain reconstruction of control signals.
  •            
  • Used in residue calculus and complex analysis.
  •            
  • Engineering applications in circuit response and system dynamics.
  •          
       
     
         
 
×

×