Transforms - Fourier Transform

 
   
     
       

Fourier Transform

       

Understanding the Fourier Transform

       

          The Fourier Transform is a mathematical tool that transforms a time-domain function into a frequency-domain representation.           It expresses how much of each frequency exists in a signal.        

        Fourier Transform formula variations.      
     
       
         

Definition:

         

If \( f(x) \) is a function of time or space, then its Fourier Transform \( F(s) \) is given by:

         
           

\[ F(s) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i x s} dx \]

           

\[ f(x) \iff F(s) \]

           

\[ F(s) = \int_{-\infty}^{\infty} f(x) e^{-ixs} dx \quad ; \quad f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(s) e^{ixs} ds \]

           

\[ F(s) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{-ixs} dx \quad ; \quad f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} F(s) e^{ixs} ds \]

         
         

Key Properties:

         
               
  • Linearity: \( \mathcal{F}(af + bg) = aF + bG \)
  •            
  • Time Shifting: \( \mathcal{F}(f(x-a)) = e^{-ias} F(s) \)
  •            
  • Frequency Shifting: \( \mathcal{F}(e^{i\omega x}f(x)) = F(s - \omega) \)
  •            
  • Scaling: \( \mathcal{F}(f(ax)) = \frac{1}{|a|} F\left(\frac{s}{a}\right) \)
  •          
         

Applications:

         
               
  • Signal Processing – frequency spectrum analysis.
  •            
  • Image Processing – edge detection, filtering.
  •            
  • Quantum Physics – wavefunction solutions.
  •            
  • Electrical Engineering – filter design and modulation.
  •          
       
     
         
 
×

×