Transforms - Parseval's Theorem

   
       
           
               

Fourier Series

               

Parseval’s Theorem

               

                    Parseval’s Theorem provides a relationship between the total energy of a signal in the time domain and the energy contained in its frequency components (Fourier coefficients).                

                Parseval’s Theorem showing energy conservation in Fourier domain.            
           
               
                   

Statement:

                   
                       

\[ \frac{1}{2L} \int_{-L}^{L} |f(x)|^2 dx = \frac{a_0^2}{4} + \frac{1}{2} \sum_{n=1}^{\infty} (a_n^2 + b_n^2) = \sum_{n=-\infty}^{\infty} |c_n|^2 \]

                   
                   

Key Properties:

                   
                           
  • Shows energy conservation between time and frequency domains.
  •                        
  • Useful for checking the correctness of Fourier coefficients.
  •                        
  • In signal theory, it is used to evaluate signal power.
  •                    
                   

Applications:

                   
                           
  • Signal energy/power analysis.
  •                        
  • Audio and image compression techniques.
  •                        
  • Orthogonality verification in Fourier basis functions.
  •                    
               
           
                   
   
×

×